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COMMENT 

Random walks on fractals: higher moments? 

Panos Argyrakist, Lola W Anackerg and Raoul Kopelmans 
+ Department of Physics 3 13-1, University of Thessaloniki, 54006 Thessaloniki, Greece 
5 Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, 
USA 

Received 7 July 19S7 

Abstract. We investigate bq numerical simulation the higher moments for S , ,  the number 
of distinct sites visited in an  N-step random walk on  fractal structures: the Sierpinski 
gasket, the Sierpinski web, and  the percolation clusters of the square planar and  the simple 
cubic lattices. We find that these moments scale similarly, e.g., the ratio of the s tandard 
deviation to (S,), the average S,, is constant in time. 

In studying the expected values of various random-walk properties on lattices, the 
statistical distribution of the data is of considerable interest. Therefore, previous 
investigations have calculated the variance [ 1,2]  (square of the standard deviation (T) 
and several higher moments [3-61 of properties such as SN, the number of distinct 
sites visited in an N-step walk. These moments are significant when testing for scaling 
of various prciperties (see, for instance, equation (6) of [6]). 

It is well known that in impurity-doped lattices the expected values of the above 
random-walk quantities are extremely difficult to estimate analytically because of 
random inhomogeneities. Consequently, it is very difficult to calculate the moments 
of these random variables. In the present work we investigate the statistical distributions 
of S N  obtained from random-walk simulations on the planar Z D  Sierpinski gasket, the 
3~ Sierpinski gasket (called the Sierpinski web), and 2~ and 3~ percolation clusters. 

It is believed that such random-walk statistics on fractal structures are non-Gaussian 
[4-71. Also, it has been conjectured that the ratio of (S,) to its standard deviation 
yields a constant [4-71. We consider the first mth moments by calculating the so-called 
reduced moments defined by 

, = I  

where pl ,  the first moment, is the arithmetic mean: 
A 

11.1 = k - '  c x,. 
, = I  

For Euclidean lattices the first two moments are well known [ l ,  21: 
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( 8 N / i r ) '  ' 1D 

u : ~ ,  = N'lln' N 2D (3)  
[ I l n N  3D. 

( S , ) =  i rN/ ln  N 

[CN 
For Gaussian statistics p z  is a monotonically decreasing function; for the fractal 

structures, the conjecture implies that p z  is constant. I f  this is correct, i t  is useful not 
only in determining the accuracy of simulation results on fractals but also in bounding 
the fractal-to-Euclidean crossover regime. The onset of the crossover could then be 
characterised in terms of moving from non-Gaussian to Gaussian statistics, i.e. from 
a constant to a monotonically decreasing p; .  

The simulation methods are described in greater detail in [8-111, and a brief 
description is included below. Results and a discussion complete this comment. 

For simulations on the planar Sierpinski gasket and the Sierpinski web, single 
random walkers started at random initial sites; a site was defined as the vertex of a 
triangle. The direction of motion at each time step N was decided by a number selected 
from a uniform pseudorandom distribution. A walker moved with equal probability 
to any of its z nearest-neighbour sites, where z = 4 for the Sierpinski gasket and z = 6 
for the Sierpinski web. A total of 3000 realisations were performed on the eighth-order 
planar Sierpinski gasket (-lo4 sites) with N = 2000 steps; in addition, 5000 realisations 
were performed on the sixth-order Sierpinski web (= lo4  sites) with N =2000 steps. 

Calculations on percolating clusters were performed using the recently described 
method [ lo]  of generating such clusters exactly at their critical threshold (and not just 
on  the average). Random-walk motion was followed using the myopic ant model for 
a total of N = 5000 steps, and  for 10 000 realisations. The walker was initially positioned 
at some random site of the percolation cluster, and its direction of motion was decided 
by a pseudorandom variable with uniform distribution. The size of the lattices employed 
was 300x300, and only one random-walk event was performed on each lattice. 

For figure 5 (see below) the data from [ l l ]  were used. Here the cluster-growth 
technique was utilised on lattices of size 157' and the random-walk process was followed 
for N = 2 x lo5 steps. This technique allowed the random-walk process to occur on 
clusters of any size in contrast with the previous method which restricted the random 
walk to the largest cluster. 

The reduced moments for the planar Sierpinski gasket (figure 1) and the Sierpinski 
web (figure 2 )  are seen to be reasonably constant for p?, p: and p z .  In fact, the 
largest fluctuation seems to be in the second reduced moment. More extensive simula- 
tions based on 10 000 realisations [4,5] have shown that p? is indeed constant for the 
planar Sierpinski gasket. 

Figure 3 shows the S ,  distribution for random walks on the infinite percolating 
cluster. Since these clusters are generated exactly at criticality, it is expected that the 
random walks will exhibit truly fractal behaviour. Indeed, as it has been shown [lo],  
the spectral dimension d, in the relationship S,, - Nd' ' is d, = 1.30+0.02, in excellent 
agreement with the generally accepted conjectures for percolating clusters. One 
observes in figure 3 that the S ,  distribution at step N = 5000 is not symmetric, but 
nevertheless it is relatively smooth. The different moments are shown in figure 4. Here 
the second moment is relatively smooth and constant with respect to time. 

Figure 5 shows a plot of u / S h  for three-dimensional simple cubic lattices slightly 
below, around and above the critical percolation threshold. This calculation is per- 
formed using the cluster-growth technique and thus the point of origin for the random 
walk may be on a cluster of any size and not just the largest infinite cluster. One sees 
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Figure 1 .  Reduced moments +: (tr iangles),  +? (circles) and w f  (squares) plotted against 
time. 5000 realisations on an eighth-order planar Sierpinski gasket followed single random 
walkers for 4000 steps. 
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Figure 2. Reduced moments +* (tr iangles),  +; (circles) and p$ (squares)  plotted against 
time. 3000 realisations on a sixth-order Sierpinski web followed single random walkers 
for 7000 steps. 

that the only constant curve occurs around the critical point p c  = 0.312 while above 
this point the curves increase at different rates. This is just another manifestation of 
the crossover from fractal to Euclidean behaviour shown in figures 6 and 7 of [ 111. 

In summary, the conjecture that higher moments all scale in the same fashion for 
fractal structures is quite good, based on the systems which we considered here in two 
and three dimensions: the percolation clusters at criticality and the Sierpinski structures. 
Not only is this conjecture useful in assessing the accuracy of simulation results on 
fractals, but it may also provide a means of bounding the beginning of the fractal to 
Euclidean crossover regime with the transition from non-Gaussian to Gaussian statis- 
tics. The final stages of the crossover regime are best characterised with the use of the 
formulae in (3). 
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Figure 3. The S, distribution from the random walks on the infinite percolating cluster 
exactly at criticality. This  histogram contains 10000 realisations (see text for details of 
calculations).  These results are for N = 5000 steps, where (S,)=288.0. 
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Figure 4. Several different reduced moments from random walks on the infinite percolating 
clusters exac:ly a t  criticality. The data  a re  the same as  in figure 3 .  T o p  to bottom: fourth,  
third and second moments.  In order  t o  bring all three curves onto the same scale they 
habe been multiplied by the factors lo’, -2x  IO5 and  I ,  top to bottom, respectively. 
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Figure 5. Plot of v/(S,,) a s  a function of time ( N is number of steps) for three-dimensional 
simple cubic lattices. The different lines correspond to  different occupational probabilities 
p ,  as p = 1.00, 0.75, 0.50, 0.40, 0.35, 0.34, 0.33, 0.325, 0.32, 0.3175, 0.315, and  0.31 from top  
to bottom. Here the random walk process may originate on any-size cluster ( and  not just 
the largest cluster). 
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